Phospholamban knockout increases CaM kinase II activity and intracellular Ca2+ wave activity and alters contractile responses of murine gastric antrum.

نویسندگان

  • Minkyung Kim
  • Grant W Hennig
  • Terence K Smith
  • Brian A Perrino
چکیده

Phospholamban (PLB) inhibits the sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA), and this inhibition is relieved by Ca(2+) calmodulin-dependent protein kinase II (CaM kinase II) phosphorylation. We previously reported significant differences in contractility, SR Ca(2+) release, and CaM kinase II activity in gastric fundus smooth muscles as a result of PLB phosphorylation by CaM kinase II. In this study, we used PLB-knockout (PLB-KO) mice to directly examine the effect of PLB absence on contractility, CaM kinase II activity, and intracellular Ca(2+) waves in gastric antrum smooth muscles. The frequencies and amplitudes of spontaneous phasic contractions were elevated in antrum smooth muscle strips from PLB-KO mice. Bethanecol increased the amplitudes of phasic contractions in antrum smooth muscles from both control and PLB-KO mice. Caffeine decreased and cyclopiazonic acid (CPA) increased the basal tone of antrum smooth muscle strips from PLB-KO mice, but the effects were less pronounced compared with control strips. The CaM kinase II inhibitor KN-93 was less effective at inhibiting caffeine-induced relaxation in antrum smooth muscle strips from PLB-KO mice. CaM kinase II autonomous activity was elevated, and not further increased by caffeine, in antrum smooth muscles from PLB-KO mice. Similarly, the intracellular Ca(2+) wave frequency was elevated, and not further increased by caffeine, in antrum smooth muscles from PLB-KO mice. These findings suggest that PLB is an important modulator of gastric antrum smooth muscle contractility by modulation of SR Ca(2+) release and CaM kinase II activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phospholamban knockout increases CaM kinase II activity and intracellular Ca wave activity and alters contractile responses of murine gastric antrum

Kim M, Hennig GW, Smith TK, Perrino BA. Phospholamban knockout increases CaM kinase II activity and intracellular Ca wave activity and alters contractile responses of murine gastric antrum. Am J Physiol Cell Physiol 294: C432–C441, 2008. First published November 28, 2007; doi:10.1152/ajpcell.00418.2007.— Phospholamban (PLB) inhibits the sarcoplasmic reticulum (SR) Ca -ATPase (SERCA), and this i...

متن کامل

CaM kinase II activation and phospholamban phosphorylation by SNP in murine gastric antrum smooth muscles.

Elevations in the intracellular Ca(2+) concentration activate the serine/threonine protein kinase Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II). We tested the hypothesis that increased sarco(endo)plasmic reticulum Ca(2+)-ATPase activity by phospholamban (PLB) phosphorylation contributes to smooth muscle relaxation by elevating the sarcoplasmic reticulum (SR) Ca(2+) load and incr...

متن کامل

Roles of CaM kinase II and phospholamban in SNP-induced relaxation of murine gastric fundus smooth muscles.

The mechanisms by which nitric oxide (NO) relaxes smooth muscles are unclear. The NO donor sodium nitroprusside (SNP) has been reported to increase the Ca2+ release frequency (Ca2+ sparks) through ryanodine receptors (RyRs) and activate spontaneous transient outward currents (STOCs), resulting in smooth muscle relaxation. Our findings that caffeine relaxes and hyperpolarizes murine gastric fund...

متن کامل

Phosphatidylinositol 3-kinase offsets cAMP-mediated positive inotropic effect via inhibiting Ca2+ influx in cardiomyocytes.

Phosphoinositide 3-kinase (PI3K) has been implicated in beta2-adrenergic receptor (beta2-AR)/G(i)-mediated compartmentation of the concurrent G(s)-cAMP signaling, negating beta2-AR-induced phospholamban phosphorylation and the positive inotropic and lusitropic responses in cardiomyocytes. However, it is unclear whether PI3K crosstalks with the beta1-AR signal transduction, and even more general...

متن کامل

Activity of cAMP-dependent protein kinase and Ca2+/calmodulin-dependent protein kinase in failing and nonfailing human hearts.

OBJECTIVES A hallmark of human heart failure is prolonged myocardial relaxation. Although the intrinsic mechanism of phospholamban coupling to the Ca(2+)-ATPase is unaltered in normal and failed human hearts, it remains possible that regulation of phospholamban phosphorylation by cAMP-dependent mechanisms or other second messenger pathways could be perturbed, which may account partially for the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 294 2  شماره 

صفحات  -

تاریخ انتشار 2008